If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+8y-24=0
a = 1; b = 8; c = -24;
Δ = b2-4ac
Δ = 82-4·1·(-24)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{10}}{2*1}=\frac{-8-4\sqrt{10}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{10}}{2*1}=\frac{-8+4\sqrt{10}}{2} $
| 16=4a8 | | 10–(1/4)x=30-(1/2)x | | m/3+11=28 | | (x/4)-9=3 | | (x-30)+(x+25)=7x | | 4x-2=11x+12 | | 2(x+0.3)=2 | | 10x+23-9x=73 | | 1/2(4x-10)=1 | | 10x+23-9x= | | 9y-5y+16=20+6y | | 2+2x=19+2x* | | 7x=2×+6 | | xx6+17=xx2+77 | | 2/4x+10=1/4x+54 | | 11=-2m | | -33=x/11 | | c=-2c-4 | | 78=3/u | | 3(t-1)-2(2t+3)=5t+3) | | 4x+5÷7+3x=x/7-1/9 | | -7=-46+x/4 | | 6p=22=10 | | 2(2x+2)=10x+8 | | 10+0,2x=30+0,1x | | 30x+12=600 | | 6x²-50x-500=0 | | 5(3-x)=-32x | | 5.2g+7=1.2g+15 | | (x)+(2x+7)+(x-8)+(3x-11)+(x+8)=540 | | 5.6+x=−7 | | 4x-9=10x+2 |